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Abstract: In agriculture, abiotic stress is one of the critical issues impacting the crop productivity and
yield. Such stress factors lead to the generation of reactive oxygen species, membrane damage, and
other plant metabolic activities. To neutralize the harmful effects of abiotic stress, several strategies
have been employed that include the utilization of nanomaterials. Nanomaterials are now gaining
attention worldwide to protect plant growth against abiotic stresses such as drought, salinity, heavy
metals, extreme temperatures, flooding, etc. However, their behavior is significantly impacted by
the dose in which they are being used in agriculture. Furthermore, the action of nanomaterials in
plants under various stresses still require understanding. Hence, with this background, the present
review envisages to highlight beneficial role of nanomaterials in plants, their mode of action, and their
mechanism in overcoming various abiotic stresses. It also emphasizes upon antioxidant activities
of different nanomaterials and their dose-dependent variability in plants’ growth under stress.
Nevertheless, limitations of using nanomaterials in agriculture are also presented in this review.

Keywords: abiotic stress; plant stress tolerance; metalloids; metalloid nanoparticle; antioxidant
enzymes; antioxidant defense; ascorbate peroxidase; glutathione reductase; reactive oxygen species

1. Introduction

The upcoming challenges of rise in global population, decreasing arable lands, and
escalating threats posed by climate change exert pressure on the need for developing new
techniques and methods to increase yield potential during stressful conditions. Stressful
conditions for plants arise from numerous biotic and abiotic factors, which impart stresses
such as drought, salinity, temperature, and heavy metal leading to substantial modifications
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in plants. Thus, improving stress tolerance in crops is a major target of research to fulfill
the food demand of growing populations. Over the last several decades, tremendous
efforts are being taken to improve the agricultural yields through extensive application
of chemicals that have long-lasting and profound effects on the environment and human
health. Therefore, to feed the world population without damaging the environment, the
application of novel technology is necessary.

Nanotechnology is a novel approach towards the improvement in the agricultural
sector as it puts forth new ways to impart tolerance against various stresses and enhances
the productivity [1]. Nanoparticles (NPs) are molecules with dimensions of 100 nm, diverse
physicochemical properties, higher reactivity, and biochemical activity which depends
on their high surface energy and the high surface-to-volume ratio [2]. Plants have the
ability to synthesize NPs which are natural agents used for improving the morphology of
the plants without imparting any negative effects [3]. In the current situation, NPs have
the potentiality to boost plant morphogenesis, used as herbicides, nanopesticides, and
nanofertilizers, etc., that can proficiently release their content in required amounts to target
cellular organelles in plants. Still, certain potentials of NPs are not revealed due to a lack of
mechanisms that are not cleared or nor yet studied.

Different types of NPs are developed such as those containing inorganic nonmetal-
lic NPs, carbon-based NPs, metallic NPs, and organic polymeric materials based on the
application and usage [4]. Effective nutrient supply requires specific nanofertilizers or
nanoencapsulated nutrients that could act as an efficient tool towards sustainable mode
of agricultural practices. These nanofertilizers would be an alternative to chemical fer-
tilizers that, in turn, improve efficiency of resource utilization, reduce soil toxicity, and
thus, usage of nanofertilizers will assist to diminish such problems [5]. Plants are sessile so
they have to face extreme environmental stress conditions, such as salinity, drought, high
and low temperatures, heavy metals, flooding, high and low light intensities, ultraviolet
(UV), and others. The extreme environmental conditions induces bursts of reactive oxygen
species (ROS) which causes macromolecules and membrane degradation, prompts cell
toxicity, and diminishes the plant growth. Antioxidant machinery through enzymatic
and non-enzymatic systems scavenges ROS to alleviate oxidative stress. Against vari-
ous abiotic stress, NPs take part in the growth and development of plants followed by
providing protection to plants [6]. NPs have the capability to modify those genes (and
their expressions) that are involved in cell biosynthesis and organization, electron trans-
port, and energy transport during stress responses [2]. From different experiments, it
was concluded that NPs play a very important role in improvement of crop plants, but
understanding of the appropriate mechanism [1,7–10] and the way of interaction of NPs
with plants at different levels is still required at an early stage. Current review focuses on
the concept, types, mode of metal/metalloid nanoparticles together with physiological
impact of metalloid NPs on plants, their effect on growth and overcoming abiotic stress,
and the underlying mechanisms.

2. Concepts and Types of Nanoparticles

The use of NPs has a novel approach, which allows a better understanding of in-
terconnection of science and technology, and opens up new interventions in the field of
biotechnology and agriculture [11]. Particles having dimensions between 1–100 nm are
considered as NPs; they have high surface vitality and large surface to volume ratio that
increases their reactivity [12]. Besides having small dimensions and high reactivity, each
NP contains its unique physical and chemical properties. They are composed of three
layers: the outer layer known as surface layer, middle layer known as shell layer, and
the inner layer is called core layer. The shell layer is found chemically different from
core layer [13]. In the present scenario, which depicts indulging of various materials and
novel techniques to create a boom in agricultural crops and in improving crop quality,
the application of NPs in the agriculture field shows potential results through increasing
plant growth and production, as different NPs are applied through various methods, for
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instance, as herbicides, nanopesticides, nanofertilizers, etc. [14]. The major difference
between mode of action of other elements and NPs in plants is that NPs are effectively
released in required amounts and reach the targeted cellular organelles [12]. Although,
despite having numerous initial studies on potential application of nanomaterials to attain
the objective of flourishing agriculture, there is still a need to unfold their unique mode of
action in plant system, which helps to boost the agriculture production one level up [15].

NPs have different sources of origin, namely natural, incidental, and engineered [16].
Natural occurrence of NPs is from volcanic eruptions, dust storms, mineral complexes,
forest fire, photochemical reactions, etc. Incidental origin of NPs occurs through human
interventional activities, such as exhaust from metallurgic activities, coal combustion, and
industries [16]. Whereas, engineered NPs are generally classified into carbon-based NPs,
metal-based NPs, metal magnetic NPs, dendrimers, and composite NPs. Metal and metal
oxide-based NPs from the past several decades are comprehensively studied in agriculture
field for the improvement of crop productivity, and increasing the plant resilience and
tolerance under abiotic stress conditions [17]. Metal-based NPs include nanomaterials of
gold (Au), silver (Ag), copper (Cu), aluminum (Al), and iron (Fe). Additionally, their oxides,
such as titanium dioxide (TiO2), cerium oxide (CeO2), iron oxide (FeO), aluminum oxide
(Al2O3), and zinc oxide (ZnO) are also gaining so much attention of scientists worldwide
to tackle adverse environmental conditions [18–20]. The different types of nanoparticles
are given in Table 1.

Table 1. Categories and types of nanoparticles.

Categories of Nanoparticles Types of Nanoparticles References

Metal-based NPs Gold, copper, aluminum, iron, silver,
platinum, palladium [21,22]

Metalloids NPs Selenium, silicon, boron, arsenic, tellurium [23,24]

Metal magnetic NPs Cobalt, manganese, nickel, iron [25,26]

Metal-oxide NPs Titanium dioxide, cerium oxide, iron oxide,
aluminium oxide, zinc oxide, copper oxide [27,28]

Dendrimers Hybrid, tecto, micellar, chiral, liquid
crystalline, triazine [29,30]

Carbon-based NPs
Carbon nanotubes, carbon nanohorn,

nanodiamond, fullerene, graphite, graphene,
graphene oxide, carbon dot

[31,32]

3. Synthesis of Metal and Metalloid Nanoparticles

The synthesis of metal and metalloid NPs is a promising part of nanotechnology,
which offers solutions for wide areas including agriculture [33]. Engineered NPs have
distinctive electrical, mechanical, physiochemical, optical, and imaging properties that can
be controlled during synthesis process [34]. The difference between metal/metalloid NPs
and their bulk material occurs on the basis of size, shape, and surface characteristics, such
as presence of coatings, copious reactive sites, and mobility regulated by their aggregation
state [35] that further depends on their pH, temperature, ionic strength, and concentra-
tion [36]. So far, a number of methods have been developed for controlled synthesis of
NPs. Generally, there are two main approaches such as: (i) bottom-up approach and
(ii) top-down approach [37]. These are further classified under many subclasses developed
on the basis of operation, reaction condition, and adopted protocols.

Top-down pathway includes synthesis by gradual size reduction, which is achieved
via various physical and chemical methods [38]. In general, it operates when particles
are larger than nano-sized particles [34]. Whereas, in bottom-up means of synthesis,
NPs are produced from atoms and molecules that include reduction/oxidation as core
reaction [39]. This pathway is followed when metal particles are already smaller than
nano-sized molecules. During synthesis, NPs aggregate through the action of reducing
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agents which also act as anti-agglomerating agents [34]. Plant extracts and chemicals act as
reducing agents, as they contain alkaloids, terpenoids, flavonoids, phenols, carbohydrates,
anthraquinones, and proteins, etc., which reduce the size of metal ions into NPs and
stabilize the resultant NPs [40].

Moreover, bottom-up approach follows the involvement of biogenic substances. Bi-
ological agents required for the synthesis are bacteria, yeast, algae, cyanobacteria, fungi,
flagella, viruses, plants, and even human cells [41]. For the reducing agent, microorgan-
ism and plant extracts are used [42]. Biological synthesis is more feasible, cost-effective,
ecologically-friendly, and less toxic to the environment [41], due to their distinct optical,
chemical, photoelectrochemical, and electronic properties [43]. A wide range of physical,
chemical, and biological methods including environment-friendly green synthesis of NPs
are developed and applied in various disciplines. The size of NPs can be manipulated by
controlling various parameters such as pH, temperature, concentration, and exposure time
to substrate [34]. For instance, a method was developed to manipulate the shape and size
of AuNPs extracellularly produced by microorganisms through shifting the key growth
parameters [43]. Some study shows that AuNPs’ synthesis occurs by using the plants
rich in tannic acid, whereas to synthesize AgNPs, chemicals like trisodium citrate can be
used as important catalysts [44,45]. The overview of nanoparticles’ synthesis is illustrated
in Figure 1.
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Figure 1. An overview of nanoparticles’ synthesis.

4. Mode of Action of Nanoparticles in Plants

Several hypotheses have been made from the studies that were conducted to know
the exact NPs’ mode of action (Figure 2). Certain studies showed that NPs which mediated
growth of plants depends upon the concentration of NPs utilized; this can be toxic to
plant growth at higher concentrations [46–48] or it can be beneficial when given in rele-
vant concentrations [49,50]. Entry of NPs into the cells happens either by penetration or
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by transportation via particular channels located in the cellular membrane. NPs might
function as stress signaling molecules which, in turn, cause induction in the expression of
various genes involved in stressed condition. This includes the induction of expression
of regulatory factors thus resulting in activation of defense system, and finally, exhibiting
stress tolerance. Besides an acceptable level, NPs can maintain ROS at considerable level
to induce ROS signaling network hence activating defense system of plant under stress
conditions. Ruotolo et al. [51] performed meta-analysis of proteomics and transcriptomics
studies where the response of different plant species to metal-based NPs was compared. It
was found that common NPs which induced responses to stress include root architecture
modification, antioxidant mechanism activation, and involvement of specific signaling
pathway of phytohormones, although the effects were influenced by NPs’ nature and their
duration of exposure [51,52]. For example, after exposure to NPs, the root architecture mod-
ification could be due to the downregulation of genes involved in trichoblast differentiation.
This is the area from where the emergence of root hairs occurs hence trichoblasts come
under specialized epidermal cells. Further, genes responsive to indole acetic acid (IAA)
and ethylene (ET) were shown as the positive regulators of development of root hairs [51].
NPs’ treatment frequently alters biological pathways involved in defense mechanisms [51].
NPs’ treatment also upregulates genes that encode for proteins which play a primary role
in ROS balance like NADPH oxidase, GST, superoxide dismutase (SOD), and peroxidases
(POX) [51].

Plants 2022, 11, x FOR PEER REVIEW 5 of 32 
 

 

various genes involved in stressed condition. This includes the induction of expression of 
regulatory factors thus resulting in activation of defense system, and finally, exhibiting 
stress tolerance. Besides an acceptable level, NPs can maintain ROS at considerable level 
to induce ROS signaling network hence activating defense system of plant under stress 
conditions. Ruotolo et al. [51] performed meta-analysis of proteomics and transcriptomics 
studies where the response of different plant species to metal-based NPs was compared. 
It was found that common NPs which induced responses to stress include root 
architecture modification, antioxidant mechanism activation, and involvement of specific 
signaling pathway of phytohormones, although the effects were influenced by NPs’ 
nature and their duration of exposure [51,52]. For example, after exposure to NPs, the root 
architecture modification could be due to the downregulation of genes involved in 
trichoblast differentiation. This is the area from where the emergence of root hairs occurs 
hence trichoblasts come under specialized epidermal cells. Further, genes responsive to 
indole acetic acid (IAA) and ethylene (ET) were shown as the positive regulators of 
development of root hairs [51]. NPs’ treatment frequently alters biological pathways 
involved in defense mechanisms [51]. NPs’ treatment also upregulates genes that encode 
for proteins which play a primary role in ROS balance like NADPH oxidase, GST, 
superoxide dismutase (SOD), and peroxidases (POX) [51]. 

 
Figure 2. Antioxidative mechanism of action of nanoparticles in plants under abiotic stress (NPs: 
nanoparticles; MDHAR: monodehydroascorbate reductase; SOD: superoxide dismutase; APOX: 
ascorbate peroxidase; DHAR: dehydroascorbate reductase; GR: glutathione reductase; ROS: 
reactive oxygen species). 

The genes responsible for activation of antioxidant enzymes are upregulated by NPs 
[53]. Laware and Raskar [53] carried out an experiment to determine the effects of TiO2 
NPs on onion seedlings, and from the results, they suggested that the activity of SOD 
enzyme was elevated by TiO2 NPs where the enzyme’s activity was further enhanced 
when the concentration of NPs was increased. However, only at low concentration of TiO2 
NPs, there was an improvement in seedling growth and seed germination in onion which 
was suppressed at high concentration of TiO2 NPs [53]. One study showed an 
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ascorbate peroxidase; DHAR: dehydroascorbate reductase; GR: glutathione reductase; ROS: reactive
oxygen species).

The genes responsible for activation of antioxidant enzymes are upregulated by
NPs [53]. Laware and Raskar [53] carried out an experiment to determine the effects
of TiO2 NPs on onion seedlings, and from the results, they suggested that the activity of
SOD enzyme was elevated by TiO2 NPs where the enzyme’s activity was further enhanced
when the concentration of NPs was increased. However, only at low concentration of TiO2
NPs, there was an improvement in seedling growth and seed germination in onion which
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was suppressed at high concentration of TiO2 NPs [53]. One study showed an enhancement
of seed germination and growth in Glycine max seeds when exposed to TiO2 and SiO2
NPs [54].

The studies also reported that NPs can be recognized by calcium-binding protein
(CaBP) complex or as signaling molecules in the cytoplasm. Once NPs enter plant cells, NP-
specific proteins are recognized which then triggers the downstream expression of stress-
related genes [9,55]. As a result, a cascade of signaling pathways is induced intracellularly,
and associated genes are upregulated whose expressions lead to plant’s increased tolerance
responses to adverse environmental conditions. When Arabidopsis thaliana was exposed to
salinity and drought conditions or treated with ABA, responsive to desiccation (RD20) gene
expression was induced which harbors a specific conservative region for binding of calcium
ion (EF-hand) [56]. In a study, increase in the expression of RD20A, particularly in Co and
Fe NPs-supplemented plants, supported the hypothesis that NPs take part in induction of
Ca2+-binding protein expression [55]. Besides that, NPs are also thought to impart a vital
role in scavenging ROS by inducing the activities of antioxidant enzymes. Recently, very
strong evidence was provided by Sun et al. [57] which shows that the expression of Cu/Zn
SOD, Fe/Mn SOD, catalase (CAT), and ascorbate peroxidase (APX) was notably enhanced
in plants that were treated with ZnO NPs under drought.

Various transcriptomics and proteomics studies have been carried out to assess plant
and nanomaterial association [10]. Results from transcriptomics studies showed the effects
of (≤50 nm size) Cu-based NPs which modulate the genes responsive to oxidative stress,
brassinosteroid biosynthesis, and root formation [58]. Metabolomics studies on 40 nm
sized Cu NPs in cucumber (Cucumis sativus) showed increase in secondary metabolite
(such as acetyl glucosamine, phenyl lactate, 4-aminobutyrate) accumulation involved in
cell signaling and defense responses, and decrease in metabolites of flavonoid and fatty
acid synthesis, as well as riboflavin and amino acid metabolism [59]. Moreover, TiO2 NPs-
treated tobacco plants had a significant elevation in transcript levels of miR399 and miR395
in transcriptome analysis, both of which are involved in regulation of adaptive responses
of plant to nutrient stress, thus suggesting the fact that these miRNAs in tobacco plants
have a significant role in responding to TiO2 NPs [60]. When the seedlings of A. thaliana
were exposed to carbon nanodots of 3 nm, root elongation happened in a dose-dependent
manner; transcriptomics analysis revealed that the genes involved in cellular response
to phosphate starvation, UDP-glycosyltransferase activity, and stimulus response were
upregulated whereas those which took part in chloroplast structure and function were
downregulated [61]. Results from metabolomics study suggested the occurrence of defense
response activation due to the augmentation of cell wall’s carbohydrate components.

Metal/Metalloid-Based Nanoparticles for Enhancing Plant Antioxidant Defense

Antioxidant defense system of plants comprise of various enzymes like CAT, APX,
dehydroascorbate reductase (DHAR), guaiacol peroxidase (GPX), glutathione reductase
(GR), and SOD and low molecular weight antioxidant compounds such as glutathione
and ascorbate (Figure 2) [62,63]. It has been confirmed that enzyme-like activities are
possessed by various NPs where nCeO2, nFe3O4, nCo3O4 NPs imitate CAT; nCeO2, nFe3O4,
nCo3O4, nMnO2, nCuO, and nAu mimic peroxidase; nCeO2, nPt, and fullerene mimic SOD
activity [62]. With all this information in hand, still, efficient techniques are required to
detect enzymes mimicking activities of NPs when supplemented to the whole plant.

Maghemite γ-Fe2O3 nanomaterials (NMs) and magnetite Fe3O4 NMs are the most com-
mon forms among ferromagnetic FeO NMs [64–66]. It was first unveiled by Gao et al. [67]
that Fe3O4 NPs have POD-like activity and the results showed that with decreasing Fe3O4
NPs particle size, the catalytic activity would be significantly increased [67,68]. In Fe3O4
NPs, the Fe is present in either ferrous (Fe2+) or in ferric (Fe3+) form where the POD-like
activity is higher when NPs are in ferrous Fe2+ form [67]. Chen et al. [64] proved ferro-
magnetic FeO NPs can also act like CAT enzyme thus owning dual enzyme-like activity
property. At an acidic pH of 4.8, hydrogen peroxide is catalyzed by ferromagnetic FeO NPs
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forming •OH thus exhibiting POD-like activity, whereas at neutral conditions ferromagnetic
FeONPs exhibit CAT-like activity, decomposing hydrogen peroxide to H2O and O2. Side-
by-side comparison of catalytic performance was done on two types of FeO ferromagnetic
NPs on the basis of surface charge and similarity in sizes. From the results, it was known
that POD-like activity was possessed by Fe3O4 NPs than γ-Fe2O3 NPs [64]. From all these,
it can be concluded that ferromagnetic FeO NMs can perform multifunctional activities
by combining enzyme-like and magnetic properties. In a study, doping γ-Fe2O3 NPs with
yttrium has decreased the amount of H2O2 by 45% and peroxidation of membrane lipid by
28% in the leaves of B. napus, leading to alleviation of drought stress impacts on plant [69].
When maize grown in calcareous soil was foliar-sprayed with Fe3O4 NPs, scavenging of
H2O2 was enhanced, and the rate of peroxidation of membrane lipid was brought down in
comparison to the control [70]. Similarly, Fe3O4 NPs have been used to protect cadmium
toxicity in tomato plants by reducing oxidative stress level [71]. Using all these results, it
can be confirmed that γ-Fe2O3 and Fe3O4 NPs protect plants from environmental stresses.
In addition to that, Li et al. [72] carried out an experiment in seedlings of Citrus maxima
to compare γ-Fe2O3 and Fe3O4 NPs. It was found that Fe3O4 NPs have more antioxidant
capacity than the γ-Fe2O3 NPs.

CeO2 NMs are considered as the initial NMs, which have SOD-like activities exceeding
the catalytic activity of native SOD [73]. The preliminary mechanism to possess enzyme-
like activity is to have the ability to switch between two valence states (Ce3+ and Ce4+)
with a significant level of oxygen vacancy on its surface [74]. CeO2 NMs retains longer
when the cycling is between two oxidation states (Ce3+ and Ce4+) and remains uninter-
rupted with Ce3+ being continuously regenerated. Various studies have been carried out
in the past to determine the multifunctional enzyme activity (SOD and CAT) of CeO2
nanozymes [73,75,76]. As a thumb rule, CeO2 NMs function as SOD-like when the ratio
of Ce3+/Ce4+ is high and CAT-like when the ratio is low [77]. Under alkaline or neutral
conditions, CeO2 NMs exhibit CAT-/SOD-like property whereas under acidic conditions
OXD-/SOD-like property is exhibited by CeO2 NMs [76]. It is henceforth clear that O2

•−

and H2O2 can be scavenged by CeO2 NMs due to their ability to mimic ROS scavenging
enzymes. Recently CeO2 NMs have attracted attention to scavenge ROS in plants under
environmental stresses. The coating of anionic poly (acrylic acid) on CeO2 NPs (10nm) with
low (35%) ratio of Ce3+/Ce4+ has been reported to scavenge ROS by 52% in the A. thaliana
leaves subjected to abiotic stress [78]. Sorghum leaves under drought stress have been
compared by spraying water (control) and CeO2 NPs to leaves, and it was observed that
leaves sprayed with CeO2 NPs had decreased O2

•− content by 41% and H2O2 content by
36% as compared to control [79]. In cotton roots, efficient reduction in accumulation of
ROS by 46% has been observed when seeds were primed with poly (acrylic acid)-coated
CeO2 NPs under salinity stress [80]. The results of transcriptomic analysis showed that
tolerance to saline conditions had improved when seed priming with CeO2 NMs had been
carried out which induced changes in expressions of gene family coding for antioxidant
enzymes [80]. Thus, it is clear from previous studies that CeO2 NMs have dual roles of
scavenging ROS and are an inducer of antioxidant enzymes.

Cobalt oxide (Co3O4) NPs have dual intrinsic POD-like and CAT-like enzyme activi-
ties [81]. Transfer of electrons between H2O2 and the substrates potentially offer Co3O4
NPs the ability to function like POD. Although Co3O4 NPs have dual intrinsic enzyme-like
activities, its ability to function as CAT-like is weaker than that of its ability to function like
POD. However, the CAT-like activity can be modified by changing the pH to neutral or
to basic from acidic conditions [82]. Jahani et al. [83] did a field work of spraying Co3O4
NPs at different concentrations, where the foliar spray of these NPs at a concentration
<100 mg L−1 induced growth of plant and did not cause production of ROS; however, at
>250 mg L−1 concentration of Co3O4 NPs, ROS generation was induced and negatively
affected growth and photosynthetic activity. It is still a mystery that the plant growth
inducing effect of Co3O4 NMs is because of its ability to act enzyme-like or due to some
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other unknown function. Future research must be carried out to understand the association
between Co3O4 NMs and plants under environmental stress.

Manganese NMs such as Mn3O4, MnO, and MnO2 have the ability to eliminate
high amounts of ROS and also possess enzyme-like activities [84–86]. From the study of
Ragg et al. [84], it is known that SOD-like activities are exhibited by MnO NPs where the
enzyme-like activity is surprisingly greater as compared to native Mn-SOD. However, apart
from SOD, multiple other enzyme activities have been mimicked by MnO2 such as OXD,
POD, and CAT [85]. A very satisfying ROS scavenging efficacy was exhibited by Mn3O4
NPs where •OH was removed [86]. The fast redox exchange between two oxidative states
of Mn (Mn2+ and Mn3+) is crucial for the intrinsic multifunctional enzyme-like activity
of Mn3O4 NMs [87]. H2O2 and O2

•− couple show a high degree of affinity for H2O2
and O2

•− than any other transition metal couples. It was also found that Mn3O4 NPs’
ability to eliminate ROS was way superior to that of CeO2 NPs [86]. Hence manganese
oxide-based NMs can be used as a promising therapeutic tool for treating ROS-mediated
diseases [86–88]. Taking into account the abovementioned observations, more relevant
studies regarding the catalytic and antioxidant activities of Mn3O4 NMs are needed in the
coming future.

There are some other NPs that can be beneficial at low concentrations but toxic when
supplied at higher concentrations. Zinc oxide (ZnO) NPs have been used in plants to
overcome Zn deficiency and abiotic stresses. When ZnO NPs with the size of 90 ± 10 nm
applied at varying concentration between 400–3200 mg Zn kg−1, levels of superoxide (O2

−)
radical were found to be elevated and a significant raise in SOD activity at a maximum dose
was documented in maize [89]. On treating Gossypium hirsutum with ZnO NPs, enhanced
POX and SOD activities with a subsequent drop in lipid peroxidation was reported [90].
ZnO NPs come in various shapes and sizes like spherical (38 nm), floral (59 nm), rod-like
(>500 nm), and also Zn2+ ions; out of all these, the most protective form was found to be
spherical ZnO NPs of size 38 nm which elicited the greatest oxidative stress responses
(SOD, POX, MDA, CAT, H2O2 synthesis) in soybean [91].

The pretreatment by TiO2, ZnO NPs resulted in obvious increase in GPX and SOD
activity which also improved the tolerance against heat stress, further lowering the levels
of H2O2 and causing membrane stabilization (1.5 times) [92]. Gene expression analyses
on A. thaliana exposed to ZnO NPs showed 660 up- and 826 downregulated genes [93];
further analyses on roots exposed to TiO2 NPs and fullerene soot (FS) NPs revealed 80 up-
and 74 downregulated genes and 232 up- and 189 downregulated genes, respectively
(expression difference > 2-fold).

Enhanced activities of APX, GPX, CAT, and GR were noticed when seedlings of Brassica
juncea were treated with gold nanoparticles (GNPs) which also resulted in proline and
H2O2 accumulation in an amount greater than usual in plants treated with GNPs which
kept on increasing with increase in concentration of GNPs [94].

Extensive research is still being carried out to understand the interactions between
plants and metallic oxide nanomaterials (NMs) [95,96]. Few metal-oxide NMs such as
CeO2NMs, MnO2 NMs, cobalt oxide (Co3O4) NMs, and ferromagnetic FeO are available in
mixed valence state and hence have the ability to function as nanozymes for scavenging
free radicals [65,96,97].

5. Application of Metal and Metalloid Nanoparticles for Improving Abiotic
Stress Tolerance

Abiotic stresses are major problems for agriculture productivity and extension. They
include drought, salinity, alkalinity, submergence, mineral and metal toxicity/deficiencies,
and many others that reduce crop growth and productivity. Plants adapt and mitigate
abiotic stresses by alterations in morphological, physiological, biochemical, and molecular
levels to combat various stresses. Researchers have revealed that NPs help plants to
overcome abiotic stresses by their concentration-dependent impact on plant growth and
development [98]. The effect of abiotic stresses and the ways by which NPs combat abiotic
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stress and impart tolerance is depicted in Table 2. Recapitulation of the possible interaction
between NPs and plant metabolisms is essential to explore the novel insights in the field of
plants’ stress tolerance.

Table 2. Positive effect of various types of nanoparticles on some plant species under different abiotic
stress conditions.

Plant Species NPs Concentration of
NPs Type of Stress Response References

Mentha piperita L. Fe2O3 0, 10, 20, and 30 µm Salinity Decreased accumulation of
proline and ROS [99]

Capsicum annum L. MnNPs 0.1, 0.5, and
1 mg L−1 Salinity

Redistributed manganese,
sodium, potassium, and
calcium content in shoot

and root

[100]

Solanum lycopersicum CuNPs 50, 100, and
150 mg L−1 Salinity Increases lycopene, carotenoid,

and SOD activity [101]

Triticum aestivum AgNPs 1 mg L−1 Salinity Increased IBA, NAA, and
BAP accumulation [102]

Lupinus termis ZnO 20–60 mg L−1 Salinity
Modulate growth,

photosynthesis, and
antioxidant responses

[19]

Zea mays L. CuNP 3.33, 4.44 and
5.55 mg L−1 Drought Higher biomass grain yield [103]

Fragaria×ananassa
Duch Fe3O4 0.8 ppm Drought Improved morphological and

growth parameters [104]

Glycine max CeO 0, 10, 100 and
500 mg kg−1 Salinity

Higher photosynthetic rate,
RuBisCo carboxylase, and

water use efficiency
[105]

Gossypium hirsutum L. Graphene 200 µg ml−1 Drought Increased fiber biomass [106]

Triticum aestivum L. TiO2 0.01–0.03% Drought Higher amount of gluten
and starch [107]

Sorghum bicolor L. SeNP 10 mg L−1 Heat Improved integrity in thylakoid
and photosynthetic apparatus [79]

Lycopersicum esculentum SeNP 4–12 µM Low and high
temperature

Better morphological
growth traits [108]

Oryza sativa ZnO NPs 5, 10, 15, 20 and
25 mg L−1 Cu and Pb Reduced metal uptake [109]

Oryza sativa FeNPs 0.4–0.8 mg L−1 Arsenic stress Reduced As uptake and
oxidative stress [110]

Arundinaria pygmaea Silicon dioxide NPs 100 µM Cu and Mn
Improved growth,

photosynthesis and the action
of protective enzymes

[111]

Glycine max AgNPs 2 mg kg−1 Flood
Downregulated alcohol

dehydrogenase 1 and pyruvate
decarboxylase 2 genes

[112]

Zea mays poly(epsilon-
caprolactone) 2.5 kg ha−1 Herbicide toxicity

Reduced the mobility of
atrazine in the soil
and genotoxicity

[113]

Glycine max Ag NPs 5 mg kg−1 Flood Prevented mis-folding
of proteins [114]

Glycine max Al2O3 NPs 50 mg kg−1 Flood
Regulated the AsA/GSH
pathway and increased

ribosomal proteins
[115]
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5.1. Drought

Among different stresses, drought is a frequently occurring stress, causing scarcity of
water followed by high temperature and loss of water uptake by the plants. It is mainly
found in the dry and semiarid regions thereby affects plant growth at early stage, i.e.,
starting from seed germination to seed setting [116]. Drought stress can be transformed by
different NPs’ application such as studies reported that drought stress tolerance in plants
imparted by silica NPs. According to Ashkavand et al. [117], application of silica NPs in
hawthorns improved seedling growth and physiological parameters under drought stress.
Similar results were observed in Triticum aestivum, which improved starch and gluten con-
tent thereby improving growth and yield under drought condition [107]. This amendment
is due to the ability of TiO2 to facilitate germination of seeds and growth of seedlings. TiO2
also helps to increase biomass, keep relative water content (RWC), and boost antioxidative
enzymes in plants under drought stress [6]. Jute seeds treated with CaNP (hydroxyapatite
nanoparticle) showed improved tolerance against drought stress via biosynthesis of proline
and thus controlling the level of proline [118]. Although drought stress severely hampers
the corn seedlings and decelerates its growth, whereas treatment with yttrium-doped Fe2O3
NPs improved photosynthetic machinery with increased chlorophyll, carotenoid content,
and also ameliorated the negative impacts of drought on B. napus [69].

According to Sedghi et al. [119], ZnO in G. max improved seed germination percentage
and dry weight, by utilizing seed reserves at faster rate due to the increased activity of
gibberellins. Similarly, Fe2O3 enhanced tolerance against drought stress by modifying car-
bohydrate metabolism and stomatal movements. Studies conducted in maize proved that
nano ZnO downregulate photosynthetic pigment degradation and thus enhance the rate of
photosynthesis and stomatal movements. Starch and sucrose synthesis were also enhanced
by manipulating key enzymes such as UDP glucose pyrophosphorylase, phosphoglucoiso-
merase, and cytoplasmic invertase leading to better performance under drought stress [57].
This makes ZnO a potential nano agent to mitigate the negative effects of drought stress.
Van Nguyen et al. [103] reported that in maize, CuO NPs positively regulate pigment
system and ROS scavenging mechanism to cope with drought stress. Application of the
same NP at low concentration via roots and leaves has been found to improve crop perfor-
mance by enhancing the performance of chlorophyll and photosynthetic enzymes such as
RubisCO and thereby photosynthesis. It also helps in supplement uptake, fortifying stress
resilience, and positively impacts on yield.

5.2. Salinity

Salt stress is the most noteworthy universal concern that influences crop growth and
productivity. Unusual increase in sodium (Na+) and chloride (Cl−) generates cytotoxicity
and imbalance in nutrition further coupled with oxidative stress due to ROS production
followed by implementing a strategy of osmoregulation. During osmoregulation, the plant
will accumulate the organic compounds such as amino acids, polyols, sugars, glycine
betaine, and quaternary ammonium compounds which further results in decreased osmotic
potential. Another key solution is ion homeostasis where the concentration of Na+ is
reduced and K+ concentration will be increased in the cell to overcome the ROS affect and
to start the activity of enzymatic machinery [120,121].

NPs help in mitigating such stresses by activating specific genes, accumulating os-
molytes, and providing free nutrients and amino acids. In Cucurbita pepo, treatment with
SiO2 NPs improved the plant transpiration rate, water use efficiency (WUE), enzyme
carbonic anhydrase activity, and defense response against salinity stress [122]. Correspond-
ingly, TiO2 (anatase) alters the photoreduction activity and hinders linolenic acid in the
electron transport chain (ETC) [123]. A study carried out in Abelmoschus esculentus revealed
that foliar application of ZnO improves photosynthetic functionality and enzymatic ma-
chinery to reduce negative impacts of salinity stress. It positively impacted on plant growth
and resulted in enhanced photosynthesis by improving the efficiency of photosystem II. It
also helps to maintain RWC thus decreasing membrane damage [124]. Similarly, combined
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application of ZnO and Si as foliar spray in mango seedlings augmented the carbon assimi-
lation and nutrient uptake further leading to improved growth conditions [125]. Various
reports on SiO2 application confirmed improved vegetative growth, increased epicuticular
wax layer, accumulation of proline, and salt stress genes were up- or downregulated to
mitigate salinity impact in different plants such as Solanum lycopersicum, strawberry, and
Ocimum basilicum [126–128].

AgNPs is a well-known nanomaterial; it has been reported that AgNPs act as potential
nano agents to mitigate salinity stress. AgNPS in T. aestivum increased the accumulation
of POD, proline, and sugar, further followed by enhanced germination [129]. Similarly,
treatment with CeO, CNTs, and graphene NPs improved the assimilation of photosynthetic
carbon, increased the proteins and amino acids at reproductive stage, and thus imparted
tolerance against salinity stress in cotton and Catharanthus roseus [80,130]. ZnO enhanced
salt tolerance by lowering the contents of malondialdehyde (MDA) and Na+ in lupine
plants, and improved germination in cumin seeds. Application of n-ZnO diminished the
negative effects of NaCl through enhancing photosynthetic system, proper osmoregulation,
and bringing down the levels of MDA and Na+ [19].

5.3. Extreme Temperature

Temperatures above maximum threshold level are called heat stress and below a mini-
mum threshold level are known as cold stress. These stresses can create an imbalance of
cell homeostasis and promote serious hindrance which may even lead to the death of the
plants. Extreme temperature directly imparts a combination of heat, and as a consequence,
oxidative stress leading to the excessive production of reactive species and further alter-
ations in physiological and biochemical activity such as production of various osmolytes
and heat shock proteins (HSPs) that can protect proteins and cell structures, and enhance
antioxidant mechanism to restore the redox potential and homeostasis [131].

NPs such as selenium were found to be effective in combating high temperature stress.
Djanaguiraman et al. [79] reported that application of selenium NPs in sorghum improved
their antioxidant machinery to scavenge ROS produced as a result of heat, thus alleviating
heat stress. Similar results of SeNPs were observed in L. esculentum that imparted tolerance
against both high and low temperature stresses [108]. Photosynthetic apparatus of wheat
plants was highly affected by heat, however, use of AgNPs imparted tolerance against heat
stress and improved the morphological features such as root shoot length, root number,
fresh and dry weight, leaf area, and number [132]. Furthermore, application of NPs such as
ZnO regulated the antioxidative system and chilling response transcription factors under
chilling stress in Oryza sativa L. [133].

5.4. Metal/Metalloid Toxicity

Application of NPs are arising as a competent technique in the field of phytoremedi-
ation due to the effective interaction of the NPs with plants’ metabolism and metal ions.
Phytoremediation is a sustainable technique for the removal of hazardous wastes from
environment using potent plant candidates [134]. The NPs promoted growth of different
plant species exposed to heavy metal toxicity by mitigating the oxidative stress elicited
by heavy metals [111,135]. Application of 100 µM silicon dioxide improved the Cd, Cu,
and Mn stress tolerance potential of A. pygmaea by augmenting biomass accumulation and
increasing the activities of different biocatalysts in the plant [111]. Moreover, the silicon
dioxide increased the absorption and accumulation of heavy metals in roots and thus
prevented the translocation of the toxic compounds to the leaves [111]. NPs have the ability
to immobilize the toxic metal ions and nanofibrous composite membranes using polyvinyl
alcohol, and polyacrylonitrile have the metal chelation efficiency that aids in the removal of
Cr and Cd [136]. This study also validated the metal chelation efficiency of NPs depends on
the positive or negative charge it possesses on the surface [136]. The NPs have the potential
to protect the membrane of the plant exposed to stress by preventing the membrane degra-
dation through low MDA accumulation of NPs- treated plants exposed to metal stress [90].
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In Leucaena leucocephala, ZnO NPs induced elevation of SOD, CAT, and APX activity that
contributes to the reduction of MDA content under Cd and Pb stresses [90]. Addition of
magnetic nano-Fe3O4 into the growing media of wheat seedlings contaminated with Pb,
Zn, Cd, and Cu (10 mM) increased the activity of SOD and POD, and thus alleviated the
MDA accumulation [135]. Fe NPs which upregulate the activity of antioxidant enzymes
and glyoxalase through the accumulation of phytochelatins and glutathione simultane-
ously resulted in the boosting up of the tolerance to arsenic in rice [110]. Exposure to NPs
recovered the mineral acquisition and thus maintained the biosynthesis of photosynthetic
pigments in finger millet [137]. Parallel responses were observed in G. hirsutum when it
was treated with ZnO NPs for tolerating Cd and Pb stresses [138]. The potential of ZnO
NPs in the clearing of HM- contaminated media was established in a study performed
in rice [109].

5.5. Flooding

The plants exposed to prolonged anaerobic condition as a result of flooding stress
exhibit growth retardation and severe loss in crop productivity. Protein metabolism plays a
significant role in the flooding stress tolerance of plants. Application of Ag NPs augmented
the stress tolerance potential of soybean seedling by downregulation of protein mis-folding
induced by flooding stress [112]. During flooding stress, augmentation of glyoxalase II 3,
alcohol dehydrogenase 1, and pyruvate decarboxylase 2 genes was noticed, whereas
upon the exposure of Ag NPs, the flood-induced metabolic changes were regulated and
it reflected on the downregulation of all these enzymes [112]. Influence of Ag NPs in the
production of the glyoxalase II 3 was one of the prominent outcomes of proteomics and this
enzyme is considered as an indicator of cytotoxicity. When nicotinic acid and potassium
nitrate (KNO3) were incorporated with Ag NPs, it further boosts up the flood tolerance in
plants [114]. Another metal NP of Al2O3 also showed significant contribution in flood stress
tolerance of soybean [115]. Moreover, NPs aid to fasten the recovery kinetics of flooding
stress; soybean exposed to aluminum oxide nanoparticles (Al2O3 NPs) has the potential to
recovery by the involvement of S-adenosyl-l-methionine-dependent methyltransferases and
enolase [139]. The findings from the study conducted by Mustafa and Komatsu [115] give
clear indication on the influence of size of NPs in flood tolerance, rather than the quantity
and types. Three different sizes of Al2O3 NPs triggered different metabolic responses in
plants under flood. The catalytic activity of isocitrate dehydrogenase was increased with
the application of 5 nm Al2O3 NPs, but 30–60 nm Al2O3 NPs induced ribosomal protein
production under flood. Whereas by the high concentration, 135 nm Al2O3 NPs, improved
permeability of the mitochondrial membrane [115]. The differential imprints of 2, 15, and
50–80 nm Ag NPs on the tolerance mechanisms of the soybean under flood stress was
reported by Mustafa et al. [140]. Of the three sizes, 15 nm Ag NPs was more effective due
to the increase in ribosomal proteins, and amino acid metabolism-related proteins with
a reduction in protein synthesis-related proteins.

5.6. Other Abiotic Stresses

Apart from salinity, drought, temperature, and heavy metal stresses, other stresses
such as high light, UV, and nutrient stresses can cause oxidative stress in plants, altering
their growth and development. NPs such as TiO2 play a significant role in mitigating light
stress by catalyzing the redox reaction, which leads to the generation of superoxide and
hydroxide radicals. UV imparts negative consequences on growth as it induces oxidative
stress. Photosynthetic apparatus would be highly damaged leading to ROS production and
change in leaf structure following exposure to UV-B whereas application of SiNPs enhanced
the antioxidant machinery to regulate oxidative stress resulting from UV-B exposure [8].
Thus, NPs modulate abiotic stress-induced responses at different levels in plants, and may
be considered as potential tools for abiotic stress management in crops.
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6. Dose-Dependent Variability of the Nanoparticle Action

Entry of NPs into the plant cells occurs via roots and leaves, and cause differential
morphological and physiological changes, which either become inhibitory or stimulatory,
depending upon the NPs’ properties, such as: chemical nature, size, reactivity, and the
concentration of NPs. The inhibitory impacts of metallic NPs are apparent through its
toxicity in plants. A number of research studies on plant–NPs interaction shows that NPs
have both negative and positive effects, depending on the specific properties of NPs, their
concentrations, reactivity, and plant species [141–145]. For instance, Lin and Xing [146]
showed that seed supplemented with ZnO NPs at high concentration of 2000 mg L−1

negatively affected the germination of corn and ryegrass. Similarly, Ma et al. [147] observed
the impacts of gadolinium (III) oxide (Gd2O3), cerium (IV) oxide (CeO2), ytterbium oxide
(Yb2O3), and lanthanum (III) oxide (La2O3) at high concentration on the growth of cabbage,
lettuce, radish, rape, cucumber, tomato, and wheat, and propounded that CeO2 inhibited
the root elongation of lettuce at the concentration of 2000 mg L−1, while La2O3, Gd2O3,
and Yb2O3 at 2000 mg L−1 suppressed the root elongation of all these seven plant species.
Likewise, seed treated with TiO2 and aluminum oxide (Al2O3) affected seed germination,
growth, and development of tobacco plants. A study of other researchers also showed
the reduced growth of C. annum seedlings supplemented with 1 mg L−1 Ag NPs [148].
Inhibition of Lemna minor growth and the decreased activity of POX, CAT, and SOD activity
were reported under CuO NPs (200 mg L−1) [149]. Moreover, ZnO NPs significantly
declined the biomass of rye seedlings as well as affected the root anatomy by shrinking
root tip, epidermal, and cortex cell deformation [146].

Several studies have shown that NPs at concentrations below certain limits stimulates
seed germination [150,151], and plant growth and development [152,153]. For developing
the better understanding of NPs’ influence on plant growth, further studies could be done
based on the types and concentration of NPs.

Experimental findings of Suriyaprabha et al. [154] show that SiO2 promoted seed
sprouting of maize seedlings by increasing the nutrient uptake. A study related to TiO2
NPs’ impacts on soybean plant resulted in increased germination by enhancing the activity
of nitrate reductase. Moreover, the NP-treated seed has the capability of increased water
uptake, better water utilization, and increased nutrient uptake from the soil [155]. ZnO
NPs at low concentration (10–20 µg mL−1) reportedly enhanced the seed germination as
well as stimulated the plant growth of soybean [119], onion [23], peanut [156], wheat [157],
and in cluster bean, Cyamopsis tetragonoloba [158]. Furthermore, Kumar et al. [159] also
stated that Au NP at 10 and 80 µg mL−1 increased the plant growth and yield as well as
enhanced the number and leaf area along with chlorophyll and sugar content in A. thaliana.
Reportedly, the addition of Ag NPs at 20–60 ppm stimulated the plant length of mustard,
beans, and corn, and also increased carbohydrate, chlorophyll, and protein content in
B. juncea [160,161]. In Table 3, we tried to show the positive and negative impacts of various
nanoparticles on plants.

Table 3. Dose-dependent impacts of nanoparticles on different plant species.

Type of Nanoparticle NPs Concentration Target Plant Species Nanoparticles Impact on Plants References

Positive impacts

Copper NPs 69.4 µM Zea mays L.

Increased leaf water content,
biomass, anthocyanin, chlorophyll

(Chl), and carotenoid contents.
Controlled production of ROS and
increased seed number, and yield.

[103]

Zinc-oxide NPs 50 and 100 ppm Solanum melongena L.
Enhanced growth parameters, fruit

yield, water productivity, and
photosynthetic efficiency.

[162]
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Table 3. Cont.

Type of Nanoparticle NPs Concentration Target Plant Species Nanoparticles Impact on Plants References

Titanium dioxide NPs 60 ppm Zea mays L.

Increased growth regulating
parameters, relative water content,
potassium ion concentration, total
phenolic content, proline content,
and level of antioxidant enzymes.

[163]

Silicon NPs 300–1200 mg L−1 Triticum aestivum L.

Enhanced growth parameters and
chlorophyll content.

Optimized level oxidative enzymes.
Increased plant biomass and yield.

[164]

Iron (III) oxide NPs 10, 50 and 100 mg L−1 Sorghum bicolor (L.)
Moench

Improved and increased seed
germination rate, seedling growth,

photosystem II efficiency, Chl index,
photosynthetic rate, and relative

water content.

[165]

Negative impacts

Silver NPs 80 and 160 mg L−1 Pisum sativum L.

Decreased seed germination and
growth parameters.

Deformation in root cells and
caused increased

chromosomal abnormalities.

[166]

Aluminum oxide NPs 50–1000 mg L−1 Glycine max

Damaged root surface and root
cap.Altered lignin monomer

composition and cell-wall esterified
hydroxycinnamic acids.
Reduced phenylalanine

ammonia-lyase activity in stems.

[167]

Zinc oxide NPs 300, 600, and 1000mg kg−1 Solanum lycopersicum L.

Increased root uptake of zinc.
Increased oxidative stress by

overproducing H2O2 and reduced
level of antioxidant enzymes (APX
and SOD) also caused reduction in

total phenols, flavonoids, β-carotene,
and lycopene in fruits.

[168]

Ceria NPs 50, 100, and 200 mg kg−1 Phaseolus vulgaris

Increased stomatal conductance.
Decreased antioxidative defense.

Induced lipid peroxidation in root
and fresh weight.

[169]

Silica NPs 250 and 1000 mg L−1 Arabidopsis thaliana
Reduced growth and development

of seedlings.
Caused chlorosis in leaves.

[170]

7. Priming with Nanoparticles: An Emerging Stress Elicitor

Seed priming is the most effective method for mitigation of stress tolerance and
enhancement of crop production in plants [171]. Priming approaches are established to
augment germination and seedling growth by changing seed vigor or physiological status
of the seed [172,173]. In the recent few years, nanopriming method of seed priming with
synthetic NPs gained significance in crop advancement owing to their small size and
distinctive physicochemical properties of nanomaterials [174]. NPs, besides improving
plant growth, also safeguard from various kinds of stresses. Heavy metals (HMs) are bound
to the NPs’ surface due to its great surface area and lesser size, therefore decreasing its
accessibility [2]. NPs can simulate the antioxidant enzyme activity in nano-enzymes, which
can scavenge from oxidative stress [175]. Photosynthesis is a key metabolic process in
plants and a highly vulnerable approach, which alleviates oxidative and osmotic stress, and
its usual working can be sustained. In photosynthesis apparatus, photosystem II, RubisCo,
and ATP are the chief goals under stress conditions [176,177]. The SiO2 NPs enhanced
chlorophyll, transpiration rate, WUE, and carbonic anhydrase activity in Cucurbita pepo
under salinity conditions [122]. Likewise, TiO2 alters the photoreduction activity and
prevents linolenic acid in the electron transport chain. It also reduces the oxygen evolution
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rate of chloroplast [123]. Numerous stress responses are exhibited by plants like changes in
molecular machineries, stress response gene expression, and generation of antioxidative
enzymes, which helps to exhibit significant function in scavenging the plants in severe
environmental conditions [178]. Plants guard themselves from osmotic stress by generating
different organic osmolytes like polyols and trehalose, and diverse amino acids like glycine
and proline. NPs provide sustenance to plants in mitigating this defense mechanism [179].
In stress situations, ROS are generated by cell organelles, and this is the sign of abiotic
stress conditions. Plants are furnished with enzymatic apparatus to cope with oxidative
stress levied by the environment [2].

Priming induces enhancement in amylases, lipases, and proteases enzyme activities
that degrade macromolecules for growth and development of embryos. It also mitigates
stress at the germination stage and eventually results in greater rates of seedling appear-
ance and efficacious seedling formation [180]. These biological impacts provide assistance
to farmers in that they decrease the time, fertilization, and expenditure of re-seeding.
Nanopriming increases α-amylase activity in rice plants and ensuing greater soluble sugar
concentration for supportive seedling growth. However, more ROS generation was found
in germinating seeds of nanopriming treatment in contrast to control rice plants, indicating
that both ROS and aquaporins exhibit significant function in increasing the seed germi-
nation [181,182]. Diverse approaches for nanopriming mediating seed germination were
suggested, comprising formation of nanopores for augmented water uptake, restarting
antioxidant systems, formation of hydroxyl radicals for cell wall relaxing, and nanocatalysts
for rapid starch hydrolysis [181].

8. Biochemical Mechanism of Metal/Metalloid-Based Nanoparticles to Mitigate
Abiotic Stresses

NPs are essential implements which act as nanofertilizers, pesticides, herbicides, etc.,
for the proper growth and development of plants under various environmental stresses,
though the exact mechanisms in particular are still undiscovered [15]. It is believed that
there are some biochemical mechanisms such as detoxification pathway, especially based
on the activities of enzymatic antioxidants behind the mitigation process of stress-induced
damage using NPs. The reactivity of NPs is dependent upon some essential factors like
shape, size, composition, surface properties, stability, chemical properties, purity and
production process, and most importantly, dose applied [183–186]. Additionally, the sus-
ceptibility of NPs to different environments are mainly due to the transformation of their
configuration phase and oxidation process [187]. The core conformation of NPs may vary
plant species to species and are dependent upon the changes of environments leading to
alter their chemical and physical properties that eventually exert different responses [188].
Khan et al. [9] reported that metal/metalloid NPs can combat the adverse effects of abi-
otic stresses in crops. Generally, NPs’ uptake take place via plasmodesmata, and the
translocation of NPs occurs via apoplast and symplast [189]. They also demonstrated that
application of NPs enhanced biomass levels, chlorophyll contents as well as photosynthetic
processes, antioxidant machineries, synthesis of osmolytes, and carbohydrate contents
in plant cells. Beside these, when NPs enter into the plant cells, it not only promotes N2
levels and protein contents but also regulate the gene expression during both biotic and
abiotic stresses [189,190]. According to Sharifi et al. [175], NPs can simulate the antioxidant
defense system as nano-enzymes which restrict the production of ROS under stress envi-
ronments. NP supplementation increased the activities of some enzymatic antioxidants
viz., SOD, CAT, APX, POX, etc., and also boost up the levels of glutathione levels, proline
levels, and the phytochelatin synthesis in plants [190]. Mahato et al. [191] also reported
that NPs restrict the generation of oxidative stress by upregulating the antioxidant defense
system under different stressed conditions viz., salt stress, temperature stress, drought
stress, UV stress, etc. Thus, in this viewpoint, the enhancement of mentioned parameters
due to NP supplementation are responsible for the increase in tolerability in plants under
environmental stresses.
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According to Liu and Lal [192] and Ranjan et al. [193], there are various kinds of
NPs (viz., Mg NPs, TiO2 NPs, ZnO NPs, Cu NPs as CuO, Ag NPs as AgNO3, SiO4, Mn
NPs as MnSO4, Ca NPs as CaCO3, Mo NPs, phosphorous NPs as [Ca5(PO4)3OH], AlO4
carbon nanotubes, Fe2O3 NPs, and chitosan complex of Cu or Zn) have been used in field
conditions for proper growth and yield of agricultural crops. At first, NPs choose lateral
root synapse to enter into the plant rhizosphere and outreach towards xylem via cortex
and then pericycle [194]. However, their association with plants takes place on the basis
of some biochemical activities which may activate not only the transport of ions into the
cell but also reacts with -SH and -COOH groups, and modifies protein levels in the plant
cells [195]. Additionally, NPs are able to form a network with the transporters present in the
membrane of plant root cells to fetch inside the plants [196,197]. Thus, the transport of NPs
into the cytoplasm occurs from roots to shoots, stem, leaves via cuticle, and ultimately in
the grain but the main entrance is xylem [198,199]. Upon entry into the cell cytoplasm NPs
form complexes with diverse cell organelles and consistently begin the metabolic pathways
required for growth and yield of the plants [200]. In Figure 3, we have illustrated the
effect of nanoparticles on abiotic stresses schematically, also, Table 4 lists the biochemical
activities of some of the most common metal/metalloid-based NPs to combat the effects of
abiotic stress.
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Table 4. Biochemical activities of some metal/metalloid-based NPs to combat abiotic stress effects.

Nanoparticles (NPs) Abiotic Stresses Impact on Plants to Mitigate Stress/to
Enhance Tolerability Plant Species References

Si NPs (SiO2)

Mercury
Enhanced growth, chlorophyll levels, and
decreased Hg accumulation in both roots

and shoots
Glycine max L. [201]

Drought and salinity
Increased leaves’ growth and chlorophyll levels
maintained an equilibrium between Na+ and

K+ ions, promoted photosynthesis process
Musa acuminata [202]

Salinity Increased growth, relative water content
(RWC), proline contents, chlorophyll contents Fragaria sp. [127]
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Table 4. Cont.

Nanoparticles (NPs) Abiotic Stresses Impact on Plants to Mitigate Stress/to
Enhance Tolerability Plant Species References

Salinity
Regulation of salt toxicity-associated genes,
elevated seed germination efficiency, root

growth and weight
Solanum lycopersicum L. [126]

Drought

Increased biomass contents, photosynthetic
pigment levels, and upregulated

photosynthesis process by improving rate of
net photosynthesis and conductance of stomata

Crataegus sp. [117]

Chromium [Cr(VI)]
Enhanced growth, nutrient uptake, and
antioxidant enzymes’ activities reduced

Cr(VI) accumulation
Pisum sativum L. [50]

Salinity Increased RWC, crop yield, and the activities of
enzymatic antioxidants Vicia faba L. [203,204]

Cold Inhibited seed dormancy, increased seed
germination, and weight of seedlings Agropyron elongatum L. [205]

Salinity Enhanced growth parameters, proline levels,
and pigment contents Ocimum basilicum [206]

Salinity Inhibited seed dormancy, increased seed
germination, and fresh weight Lens culinaris Medik. [207]

Salinity

Increased the rate of seed germination, growth;
alleviated the levels of H2O2, MDA, electrolyte

leakage; improved pigment contents and
antioxidant defense system

Cucurbita pepo L. [122]

Salinity Increased fresh weight, RWC, chlorophyll
contents, and rate of photosynthesis Solanum lycopersicum L. [208]

Salinity Increased root growth, weight,
seed germination Lycopersicum esculentum [209]

Ti NPs (TiO2)

Salinity

Enhanced germination, growth parameters of
seedlings, fresh weight and dry weight, RWC,
K+ ion, proline and total phenolic contents; also

upregulated the activities of antioxidant
enzymes and alleviated Na+ ion, MDA levels,

and electrolyte leakage

Zea mays L. [163]

Drought

Elevated the dry weight of seedlings, RWC,
chlorophyll, and carotenoid contents; also

promoted transpiration rate and
stomatal conductance

Triticum aestivum [6]

Arsenic (As)
Improved growth and biomass contents,
reduced MDA contents, and induced the

regulation of antioxidant properties
Vigna radiata L. [210]

Salinity Positive impact on agronomically important
attributes by inducing antioxidant properties Dracocephalum moldavica [211]

Drought Enhanced chlorophyll and carotenoid levels,
reduced the accumulation of H2O2 and MDA Linum usitatissimum [212]

Cadmium (Cd)

Inhibited the toxic effects of Cd, enhanced
RWC, growth parameters, chlorophyll contents,

rate of net photosynthesis; restricted lipid
peroxidation and proline levels

Glycine max L. [213]

Cold
Upregulated the activities of RubisCo and

phosphoenolpyruvate carboxylase,
downregulated H2O2 content

Cicer arietinum L. [214]

Drought Modulated toxic effects, improved biomass
accumulation, and RWC Ocimum basilicum L. [215]

Drought Increased growth and starch contents Triticum aestivum L. [107]

Cold Reduced electrolyte leakage index and MDA
contents Cicer arietinum L. [216]
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Table 4. Cont.

Nanoparticles (NPs) Abiotic Stresses Impact on Plants to Mitigate Stress/to
Enhance Tolerability Plant Species References

Ag NPs

Salinity

Enhanced germination rate and no. of
germinated seeds, downregulated the levels of
oxidative stress, and induced the activities of

antioxidant enzymes viz., APX, GR, GPX

Triticum aestivum L.
cv. Pusa Kiran. [217]

Heat Induced growth, area, and numbers of leaves Triticum aestivum L. [132]

Salinity Promoted growth and enhanced the synthesis
of NAA, IBA contents, alleviated ABA level Triticum aestivum L. [102]

Salinity Increased seed germination rate, fresh weight,
and dry weight Trigonella foenum-graecum [218]

Salinity Enhanced proline and carbohydrate levels Triticum aestivum L. [129]

Cold Upregulated the genes responsible for the
activities of antioxidants Arabidopsis. thaliana [219]

Flooding
Upregulated protein levels, growth parameters,

and downregulated the production of toxic
products in the process of glycolysis

Glycine max [220]

Dark Enhanced pigments levels, activities of
enzymatic antioxidants, reduced MDA level Pelargonium zonale [221,222]

Post-harvest Enhanced fresh weight and decreased bacterial
colony formation in stem Chrysanthemum morifolium L. [223]

ZnO

Drought Enhanced growth, RWC, and nutrient uptake Solanum melongena L. [162]

Drought and
cadmium (Cd)

Enhanced growth, chlorophyll contents, and
SOD and POX activities Triticum aestivum L. [224]

Salinity

Enhanced growth of both roots and shoots,
biomass contents, chlorophyll contents, protein

levels, photosynthetic parameters, and then,
activities of CAT, SOD and POX

Lycopersicon esculentum [225]

Salinity
Upregulated protein and proline levels,

enhanced the activities of antioxidants, reduced
H2O2 and MDA levels

Trigonella foenum-graecum [226]

Arsenic (As) Promoted growth and phytochelatin contents,
decreased As uptake in the seedlings Oryza sativa L. [227]

Salinity
Enhanced pigment contents, the activities of
CAT and SOD; alleviated the levels of total

soluble sugar and proline
Abelmoschus esculentus L. [124]

Arsenic (As)
Enhanced growth, reduced As uptake,

increased photosynthetic activities, induced the
activities of antioxidant enzymes

Glycine max [228]

Drought Enhanced yield of grains and Zn accumulation Triticum aestivum L. [229]

Salinity Increased proline contents, total sugars, and the
activities of CAT, SOD, and POX Mangifera indica L. [125]

Drought Enhanced antioxidant defense system and the
synthesis of melatonin Zea mays L. cv. Jidan 27 [57]

Cadmium (Cd)

Enhanced growth, biomass contents, pigment
contents, photosynthetic attributes, and the

activities of antioxidant enzymes; alleviated Cd
accumulation in shoots and roots

Zea mays L. [230]

Cadmium (Cd)
Enhanced growth, reduced Cd uptake and
electrolyte leakage, induced the activities of

POX and SOD
Triticum aestivum L. [231]

Cadmium (Cd) and
lead (Pb)

Enhanced growth, pigment contents, protein
levels, and antioxidant enzyme activities;

reduced lipid peroxidation
Lycopersicon leucocephala [232]

Salinity Enhanced growth, Zn levels, chlorophyll levels,
rate of CO2 assimilation; reduced Na+ contents Helianthus annuus L. [233]

Drought Enhanced germination rate and reduced
dry weight Glycine max [119]
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Table 4. Cont.

Nanoparticles (NPs) Abiotic Stresses Impact on Plants to Mitigate Stress/to
Enhance Tolerability Plant Species References

Cu NPs

Drought

Enhanced biomass levels and productivity of
grains, elevated chlorophyll, carotenoid and

anthocyanin contents; reduced oxidative stress
by upregulating antioxidant defense system

Zea mays L. [103]

Cadmium (Cd)
Enhanced growth and weight, decreased Cd

accumulation, elevated ion contents and
antioxidative properties

Triticum aestivum L. [234]

Chromium (Cr)
Enhanced growth and biomass contents,

reduced Cr uptake, increased nutrient uptake
and antioxidative properties

Triticum aestivum L. [235]

Fe NPs

Drought and
cadmium (Cd)

Enhanced growth parameters, photosynthetic
activities, uptake of Fe; decreased

Cd accumulation
Triticum aestivum L. [236]

Drought
Promoted H+-ATPase activity, maintained
opening and closing of stomata; elevated

biomass, pigment contents and internal CO2

Arabidopsis thaliana [237]

Chromium (Cr) Restricted the conversion of Cr (VI) to Cr (III)
and Cr (VI) accumulation Brassica juncea [238]

Fe2O3

Salinity Decreased MDA and proline contents, subdued
antioxidant properties Mentha piperita L. [99]

Drought and
cadmium (Cd)

Enhanced growth, biomass contents, nutrient
uptake; upregulated antioxidant enzymes,

photosynthetic attributes; reduced uptake and
translocation of Cd

Oryza sativa L. [239]

Salinity and cadmium
(Cd)

Promoted growth, plant weight, biomass and
NPK contents; deceased Cd accumulation;
elevated pigment contents and antioxidant

enzyme activities

Triticum aestivum L. [240]

Drought Enhanced growth and chlorophyll levels,
decreased H2O2 and MDA levels Brassica napus [69]

Fe3O3 Salinity
Induced the production of flavonoid, phenolic
compounds, and anthocyanin; enhanced the

activities of APX, GR, CAT, and GPX
Dracocephalum moldavica L. [241]

Fe3O4

Salinity
Promoted growth, pigment contents, RWC,

total soluble sugar; enhanced
membrane stability

Fragaria x ananassa Duch. [104]

Cadmium (Cd),
lead (Pb), copper (Cu)

and zinc (Zn)

Restricted the toxic effects of heavy metals,
enhanced the activities of SOD and POX Triticum aestivum L. [135]

FeSO4 Salinity

Enhanced weight, pigment levels,
photosynthetic attributes viz., net

photosynthesis, stomatal conductance,
assimilation of CO2, Fe concentration;

decreased Na levels

Helianthus annuus L. [242]

Al2O3

Flooding Enhanced growth and induced
biochemical activities Glycine max L. cv. Enrei [115]

Flooding
Enhanced growth of hypocotyl, promoted
protein levels in mitochondrial membrane,

and glycolysis process
Glycine max L. [112]

CeO
Salinity Maintained ionic equilibrium, enhanced root

growth, reduced the generation of ROS Gossypium hirsutum L. [80]

Light, dark chilling
and temperature

Enhanced internal CO2, quantum yield of PS-II,
RuBisCo activity, and reduced ROS levels Arabidopsis thaliana [78]
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Table 4. Cont.

Nanoparticles (NPs) Abiotic Stresses Impact on Plants to Mitigate Stress/to
Enhance Tolerability Plant Species References

CeO2 UV-B Absorbed UV radiation and alleviated
oxidative stress levels Chlorella vulgaris [243]

Chitosan NPs

Drought

Enhanced crop productivity, biomass contents,
RWC, chlorophyll contents; promoted the rate
of photosynthesis, and induced the activities of

SOD and CAT

Triticum aestivum L. [244]

Drought
Enhanced RWC, weight and protein in grains,

proline levels, and induced the activities of
SOD and CAT

Hordeum vulgare L. [245]

9. Limitations of Using Nanoparticles for Crop Production

Though the supplementation with NPs caused positive impact on agricultural crops
to mitigate various kinds of environmental stresses, all NPs cannot possess proper de-
fense as it varies from species to species differentially [246]. There are several reports
based on the NPs’ phytotoxicity that induced the synthesis of ROS and oxidative dam-
age [198,247–251]. According to Gottschalk et al. [252] and Navarro et al. [253], the applica-
tion of NPs in high dose caused toxicity whereas in low dose, NPs contributed a positive
effect in combating abiotic stress-induced oxidative damage through antioxidant defense
system [254,255]. NPs executed harmful effects by producing genotoxicity and oxidative
stress in plants [146,247,256–259] that also affected the physicochemical metabolic path-
ways [94] by hampering the mineral uptake in agricultural crops [260]. The toxicity of NPs
is dependent on not only the dose applied but also on the application process and its shape
and size [251,261,262]. According to Manke et al. [263], the conformational alteration in
shape and size of the NPs can lead to ROS production by affecting biochemical metabolism.
They also demonstrated that the phytotoxicity of NPs is responsible for severe physiological
deterioration by inducing inflammation, cell signaling, and genotoxicity. Ebbs et al. [251]
reported that in plants, the toxicity levels of NPs regarding uptake, accumulation, and trans-
portation also rely on the composition and surface area. Metal/metalloid-based NPs trigger
Fenton reactions to generate free radicals that eventually produce ROS in plants [264].
There are some factors that are responsible for an imbalance of redox status of NPs, as
a result, the antioxidant defense system would be downregulated and the generation of
free radicals would be enhanced [265]. Priester et al. [266] stated that further investigation
on the degree of NPs’ toxicity is vital for NPs’ supplementation in crops. Their uptake and
accumulation should also be examined for better understanding. Therefore, keeping in
mind these limitations, all the factors viz., size, shape, composition, surface area, appli-
cation procedures, redox state, applied dose etc., should be investigated properly before
application of NPs in agricultural fields to avoid ecotoxicological risks for both plants
and humans.

10. Conclusions

Crop production globally has undergone several challenges in terms of climate and
stresses. To overcome such challenges, nanotechnology has come up as a key component for
sustainable development. Nanomaterials have the properties to nullify the harmful effects
of abiotic stresses in plants by activating the antioxidant defense system of plants. Due to
their property of being able to penetrate in plants and large surface area, they have more
effective adsorption and targeted delivery, can be responsible in regulating photosynthetic
efficiency and water uptake, and detoxifying reactive oxygen species, thereby enhancing
seed germination, growth, and yield of crops. By careful analysis of dosage to be used
for different nanomaterials, they can be sustainably utilized in the agriculture for better
productivity. However, there is still a need for the risk assessment and fate of nanomaterials
in plants and soil as well as their interaction with the ecosystem.
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